A dual BIE approach for large-scale modelling of 3-D electrostatic problems with the fast multipole boundary element method
نویسندگان
چکیده
A dual boundary integral equation (BIE) formulation is presented for the analysis of general 3-D electrostatic problems, especially those involving thin structures. This dual BIE formulation uses a linear combination of the conventional BIE and hypersingular BIE on the entire boundary of a problem domain. Similar to crack problems in elasticity, the conventional BIE degenerates when the field outside a thin body is investigated, such as the electrostatic field around a thin conducting plate. The dual BIE formulation, however, does not degenerate in such cases. Most importantly, the dual BIE is found to have better conditioning for the equations using the boundary element method (BEM) compared with the conventional BIE, even for domains with regular shapes. Thus the dual BIE is well suited for implementation with the fast multipole BEM. The fast multipole BEM for the dual BIE formulation is developed based on an adaptive fast multiple approach for the conventional BIE. Several examples are studied with the fast multipole BEM code, including finite and infinite domain problems, bulky and thin plate structures, and simplified comb-drive models having more than 440 thin beams with the total number of equations above 1.45 million and solved on a PC. The numerical results clearly demonstrate that the dual BIE is very effective in solving general 3-D electrostatic problems, as well as special cases involving thin perfect conducting structures, and that the adaptive fast multipole BEM with the dual BIE formulation is very efficient and promising in solving large-scale electrostatic problems. Copyright q 2007 John Wiley & Sons, Ltd.
منابع مشابه
A new fast multipole boundary element method for solving 2-D Stokes flow problems based on a dual BIE formulation
A fast multipole boundary element method (BEM) is presented in this paper for large-scale analysis of two-dimensional (2-D) Stokes flow problems based on a dual boundary integral equation (BIE) formulation. In this dual BIE formulation, a linear combination of the conventional BIE for velocity and the hypersingular BIE for traction is employed to achieve better conditioning for the BEM systems ...
متن کاملDual BIE approaches for modeling electrostatic MEMS problems with thin beams and accelerated by the fast multipole method
Three boundary integral equation (BIE) formulations are investigated for the analysis of electrostatic fields exterior to thin-beam structures as found in some micro-electro-mechanical systems (MEMS). The three BIE formulations are: (1) the regular BIE using only the single-layer potential; (2) the dual BIE (a) using the regular BIE on one surface of a beam and the gradient BIE on the other sur...
متن کاملA fast multipole boundary element method for 2D multi-domain elastostatic problems based on a dual BIE formulation
A new fast multipole formulation for the hypersingular BIE (HBIE) for 2D elasticity is presented in this paper based on a complex-variable representation of the kernels, similar to the formulation developed earlier for the conventional BIE (CBIE). A dual BIE formulation using a linear combination of the developed CBIE and HBIE is applied to analyze multi-domain problems with thin inclusions or ...
متن کاملA new fast multipole boundary element method for solving large-scale two-dimensional elastostatic problems
A new fast multipole boundary element method (BEM) is presented in this paper for large-scale analysis of two-dimensional (2-D) elastostatic problems based on the direct boundary integral equation (BIE) formulation. In this new formulation, the fundamental solution for 2-D elasticity is written in a complex form using the two complex potential functions in 2-D elasticity. In this way, the multi...
متن کاملAnalytical integration of the moments in the diagonal form fast multipole boundary element method for 3-D acoustic wave problems
A diagonal form fast multipole boundary element method (BEM) is presented in this paper for solving 3-D acoustic wave problems based on the Burton–Miller boundary integral equation (BIE) formulation. Analytical expressions of the moments in the diagonal fast multipole BEM are derived for constant elements, which are shown to be more accurate, stable and efficient than those using direct numeric...
متن کامل